If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-16p+64=3
We move all terms to the left:
p^2-16p+64-(3)=0
We add all the numbers together, and all the variables
p^2-16p+61=0
a = 1; b = -16; c = +61;
Δ = b2-4ac
Δ = -162-4·1·61
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{3}}{2*1}=\frac{16-2\sqrt{3}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{3}}{2*1}=\frac{16+2\sqrt{3}}{2} $
| (7x-2x)+12=(9x-4x)+4 | | 7(c-1)=14 | | 37=1-9v | | 5x+4x-13=180 | | 3x+2x+21=5x+2 | | S-18s=80 | | q/24=14/8 | | 9/b=6/10 | | (x=3)(x=7) | | -15x-20+13x+24=20 | | 13x+23=38 | | 23=q-604÷12 | | 16y-4y-8y=28 | | 5x-13=9x+10 | | (2x+10)(2x+8)-(10*8)=168 | | 2(2x+1)-3=3 | | 2y+20=2(10)+20= | | 20x+4=15x+14 | | 2x+18=8x-12 | | 8b+5=48 | | 4x-31=9x+59 | | q-604÷12=23 | | 4(x^2+9x-42)=0 | | -3x+32+-7x=-10x+10 | | 5y-10=2(10)-10= | | 3(2x-4)=5-(3x-2) | | 2/3+2/8=x | | 4+2h=8+h | | 3(4x+4)-5=-2 | | r^2+6r+9=16 | | c+c+56=180 | | 59+29q=755 |